图:图片阐述了太阳及恒星通过核聚变获得能量的机制。图片中,蓝色球体代表中子,黄色球体代表质子。2个氢原子结合后形成了更重的氦原子,并释放出能量促使恒星发光。


(资料图片仅供参考)

今天,核能发电领域取得新的突破!AP称这一突破性成果是气候与清洁能源领域中的里程碑。来自能源部的发言人为我们揭示了促使恒星及太阳发光的核聚变机制。

核聚变如何形成?

核聚变反应能够为太阳以及其他恒星提供能量。在聚变反应中,两个较轻的核原子合并后便形成了更重的核原子,并释放出能量。

爱因斯坦等式(E=mc2)揭示了这一机制,即质量与能量能够相互转化。

如果科学家能够将这一核聚变能量用于我们的机器生产,那么,这将会是非常重要的能量生产渠道。

聚变过程涉及多种不同的已知元素。但是,关注聚变能量应用的研究人员尤其对氘氚聚变反应感兴趣。氘氚聚变能够产生一个中子、一个氦核,并且能够释放出远超其他聚变反应的能量。未来,聚变发电装置,例如托卡马克装置或者星型热核能反应器以及氘氚聚变反应中子或许能够生产出电能供我们使用。此外,研究人员关注氘氚聚变反应的另一个原因是,这一聚变反应能够在较低温度下产出大量能量,远低于其他元素所需的温度。

相关知识

恒星是由引力作用汇聚而成的球形发光等离子天体。距离地球最近的恒星是太阳。夜间,我们裸眼便能看到很多恒星,但是,由于距离遥远,这些恒星天体看上去就是一个光点。最显著的恒星已经根据星座及星群进行分类,并且为一些亮星赋予了名字。天文学家已经建立了一套组合星表来记录标准的恒星名称,从而方便辨认我们所熟知的恒星。当前,已经探测到10²² 到 10²⁴ 颗宇宙恒星,但是,仅有4000颗位于银河系中的恒星能够通过裸眼观测到。

核聚变,又称聚变反应,是指将两个较轻的核结合而形成一个较重的核和一个极轻的核的一种核反应形式。在此过程中,物质并没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子。核聚变是给活跃的或“主序的”恒星提供能量的过程。

E = mc²,即质能等价(mass-energy equivalence)、质能守恒、质能互换,亦称为质能转换公式、质能方程,是一种阐述能量(E)与质量(m)间相互关系的理论物理学公式,公式中的 c 是物理学中代表光速的常数。

阿尔伯特·爱因斯坦,是出生于德国、拥有瑞士和国籍的犹太裔理论物理学家,他创立了现代物理学的两大支柱的相对论及量子力学,也是质能等价公式的发现者。他在科学哲学领域颇具影响力。因为“对理论物理的贡献,特别是发现了光电效应的原理”,他荣获1921年度的诺贝尔物理学奖。这一发现为量子理论的建立踏出了关键性的一步。

该公式表明物体相对于一个参照系静止时仍然有能量,这是违反牛顿系统的,因为在牛顿系统中,静止物体是没有能量的。这就是为什么物体的质量被称为静止质量。公式中的E可以看成是物体总能量,它与物体总质量(该质量包括静止质量和运动所带来的质量)成正比,只有当物体静止时,它才与物体的(静止)质量(牛顿系统中的质量)成正比。这也表明物体的总质量和静止质量不同。

反过来讲,一束光子在真空中传播,其静止质量是0,但由于它们有运动能量,因此它们也有质量。

这个等式源于阿尔伯特·爱因斯坦对于物体惯性和它自身能量关系的研究。研究的著名结论就是物体质量实际上就是它自身能量的量度。为了便于理解此关系的重要性,可以比较一下电磁力和引力。电磁学理论认为,能量包含于与力相关而与电荷无关的场(电场和磁场)中。在万有引力理论中,能量包含于物质本身。因此物质质量能够使时空扭曲,但其它三种基本相互作用(电磁相互作用,强相互作用,弱相互作用)的粒子却不能,这并不是偶然的。

BY: EarthSkyand

FY: 秋

如有相关内容侵权,请在作品发布后联系作者删除

转载还请取得授权,并注意保持完整性和注明出处

推荐内容